Abstract
We study the topological entropy of a particular class of dynamical systems: cellular automata. The topological entropy of a dynamical system (X,F) is a measure of the complexity of the dynamics of F over the space X. The problem of computing (or even approximating) the topological entropy of a given cellular automata is algorithmically undecidable (Ergodic Theory Dynamical Systems 12 (1992) 255). In this paper, we show how to compute the entropy of two important classes of cellular automata namely, linear and positively expansive cellular automata. In particular, we prove a closed formula for the topological entropy of D-dimensional (D⩾1) linear cellular automata over the ring Zm(m⩾2) and we provide an algorithm for computing the topological entropy of positively expansive cellular automata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.