Abstract
The M-P (Moore-Penrose) pseudoinverse is used in several linear-algebra applications. It is convenient to construct sparse block-structured matrices satisfying some relevant properties of the M-P pseudoinverse for specific applications. Aiming at row-sparse generalized inverses, we consider 2,1-norm minimization (and generalizations). We show that a 2,1-norm minimizing generalized inverse satisfies two additional M-P properties, including one needed for computing least-squares solutions. We present formulations related to finding row-sparse generalized inverses that can be solved very efficiently, which we verify numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.