Abstract

The well-known M-P (Moore-Penrose) pseudoinverse is used in several linear-algebra applications; for example, to compute least-squares solutions of inconsistent systems of linear equations. Irrespective of whether a given matrix is sparse, its M-P pseudoinverse can be completely dense, potentially leading to high computational burden and numerical difficulties, especially when we are dealing with high-dimensional matrices. The M-P pseudoinverse is uniquely characterized by four properties, but not all of them need to be satisfied for some applications. In this context, Fampa and Lee (Oper. Res. Lett., 46:605–610, 2018) and Xu et al. (SIAM J. Optim., to appear) propose local-search procedures to construct sparse block-structured generalized inverses that satisfy only some of the M-P properties. (Vector) 1-norm minimization is used to induce sparsity and to keep the magnitude of the entries under control, and theoretical results limit the distance between the 1-norm of the solution of the local searches and the minimum 1-norm of generalized inverses with corresponding properties. We have implemented several local-search procedures based on results presented in these two papers and make here an experimental analysis of them, considering their application to randomly generated matrices of varied dimensions, ranks, and densities. Further, we carried out a case study on a real-world data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.