Abstract

The Average Common Substring (ACS) is a popular alignment-free distance measure for phylogeny reconstruction. The ACS can be computed in O(n) space and time, where n=x+y is the input size. The compressed string matching is the study of string matching problems with the following twist: the input data is in a compressed format and the underling task must be performed with little or no decompression. In this paper, we revisit the ACS problem under this paradigm where the input sequences are given in their run-length encoded format. We present an algorithm to compute ACS(X,Y) in O(Nlog N) time using O(N) space, where N is the total length of sequences after run-length encoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.