Abstract

Coordinate descent methods have considerable impact in global optimization because global (or, at least, almost global) minimization is affordable for low-dimensional problems. Coordinate descent methods with high-order regularized models for smooth nonconvex box-constrained minimization are introduced in this work. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with respect to all the variables simultaneously is $O(\varepsilon^{-(p+1)})$. Numerical examples involving multidimensional scaling problems are presented. The numerical performance of the methods is enhanced by means of coordinate-descent strategies for choosing initial points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.