Abstract
We consider coordinate descent (CD) methods with exact line search on convex quadratic problems. Our main focus is to study the performance of the CD method that use random permutations in each epoch and compare it to the performance of the CD methods that use deterministic orders and random sampling with replacement. We focus on a class of convex quadratic problems with a diagonally dominant Hessian matrix, for which we show that using random permutations instead of random with-replacement sampling improves the performance of the CD method in the worst-case. Furthermore, we prove that as the Hessian matrix becomes more diagonally dominant, the performance improvement attained by using random permutations increases. We also show that for this problem class, using any fixed deterministic order yields a superior performance than using random permutations. We present detailed theoretical analyses with respect to three different convergence criteria that are used in the literature and support our theoretical results with numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.