Abstract

SUMMARY Clairaut's theory that relates the Earth's oblate figure and internal ellipticity to its gravity under rotational-hydrostatic equilibrium has reigned classical geodesy over the centuries. In this paper, we (i) derive from first principles the classical Clairaut's theory for the polar oblateness of a rotating planet under axi-symmetric rotational-hydrostatic equilibrium and (ii) extend the development to the triaxial case for the equatorial ellipticity of a tidally locked synchronous-rotating moon under rotational-tidal-hydrostatic equilibrium. Typical derivations of the classical Clairaut's theory presented in the literature being rather laborious even to first order, we instead exploit two concise forms of methodology: the gravitational multipole formalism on the physics side, and the Jacobian determinant for the Clairaut coordinate transformation on the mathematics side. The outcome is a logical and straightforward derivation of Clairaut's theory to first order in its entirety, encompassing all the equations and related formulas in geodesy bearing Clairaut's name. That further allows a natural extension to a tidally locked moon. In particular it is demonstrated that the same Clairaut's differential equation applies to both cases governing both the polar oblateness and the equatorial ellipticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call