Abstract
In this paper several on-chip electrostatic discharge (ESD) protections for inputs, outputs and supply pins are discussed. By comparing different structures, insight has been attained in the most important parameters determining the ESD sensitivity, and optimal protections for the Human Body Model (HBM) which could be selected. In addition the test method as prescribed by the Mil-Std 883C Method 3015.7 is discussed more into detail, leading to the concept of using a supply protection for improving the ESD performance of inputs/outputs (I/Os). For input protections the performance of the lateral silicon controlled rectifier (SCR) structure is found to be superior to the behaviour of the classical thick oxide protection, the minimum failure voltage of the former being 6000 V. Several alternatives for CMOS outputs are also presented. A comparison between the “waffle” layout and the more classical ladder layout concerning the ESD performance is made. A minimum failure voltage of 1750 V for stressing the output vs the ground for both polarities has been seen on one of our output structures. However, the output failure voltage can be increased by using a good supply protection, providing a parallel discharge path. The concept of using a supply protection for achieving a better ESD hardness is highlighted in this paper. An output of a ring oscillator with a thick oxide supply protection did not fail up to 2000 V for a worst case stress, and using a SCR supply protection with an optimised output layout still should result in a better ESD hardness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.