Abstract

Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits.

Highlights

  • Electrical control of on-chip routing of photons emitted by a single InAs

  • The self-assembled quantum dot (SAQD) is located inside an H1 cavity

  • which is coupled to two photonic crystal waveguides

Read more

Summary

Introduction

Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.