Abstract

This paper demonstrates a novel drop-to-drop liquid-liquid micro-extraction (DTD-LLME) device, which is based on an electrowetting on dielectric (EWOD) digital microfluidic chip. Droplets of two immiscible liquids, one of which is an ionic liquid, are formed in nanoliter volumes, driven along electrodes, merged and mixed for extraction, and finally separated upon the completion of the extraction process. All the steps are carried out on a microfluidic chip using combined electrowetting and dielectrophoretic forces, which act on the droplet upon the application of electric potential. Specially, the phase separation of two immiscible nanoliter-scale liquid drops was achieved for the first time on an EWOD digital microfluidic chip. To study the on-chip extraction kinetics, an image-based concentration measurement technique with suitable color parameters was studied and compared with the typical UV absorption based technique. Finally, the effect of applied ac voltage frequency on the extraction kinetics was studied. The observations on DTD-LLME, particularly phase separation, are discussed. The image-based method was found to be applicable for precise concentration measurements with the right choice of the color parameter. Results from experiments on finding the frequency dependence on extraction kinetics demonstrate that the application of higher frequencies can be a factor in accelerating the extraction on the proposed microextraction device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.