Abstract

This paper describes on-chip digital holographic interferometry for measuring the wavefront deformation of transparent samples. The interferometer is based on a Mach-Zehnder arrangement with a waveguide in the reference arm, which allows for a compact on-chip arrangement. The method thus exploits the sensitivity of digital holographic interferometry and the advantages of the on-chip approach, which provides high spatial resolution over a large area, simplicity, and compactness of the system. The method's performance is demonstrated by measuring a model glass sample fabricated by depositing SiO2 layers of different thicknesses on a planar glass substrate and visualizing the domain structure in periodically poled lithium niobate. Finally, the results of the measurement made with the on-chip digital holographic interferometer were compared with those made with a conventional Mach-Zehnder type digital holographic interferometer with lens and with a commercial white light interferometer. The comparison of the obtained results indicates that the on-chip digital holographic interferometer provides accuracy comparable to conventional methods while offering the benefits of a large field of view and simplicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call