Abstract

A digital three-color holographic interferometer was designed to analyze the variations in refractive index induced by a candle flame. Color holograms are generated and recorded with a three layer photodiode stack sensor allowing a simultaneous recording with a high spatial resolution. Phase maps are calculated using Fourier transform and spectral filtering is applied to eliminate parasitic diffraction orders. Then, the contribution along each color is obtained with the simultaneous three wavelength measurement. Results in the case of the candle flame are presented. Zero order fringe, meaning zero optical path difference, can be easily extracted from the experimental data, either by considering a modeled colored fringe pattern or the wrapped phases along the three wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call