Abstract
Abstract Researchers around the world are still wondering about the real origin and causes of hidden oscillating regimes and hidden attractors exhibited by some non-linear complex models. Such models are characterized by a dynamic with a basin of attraction that does not contain neighborhoods of equilibrium points. In this paper, we show that hidden oscillating regimes and hidden attractors can also exist in systems resulting from a combination with fractional differentiation. We apply a fractional derivative with Mittag–Leffler Kernel to a dynamical system with an exponential non-linear term and analyzed the resulting model both analytically and numerically. The combined model, which has no equilibrium points is however shown to display complex oscillating trajectories that culminate in chaos. Numerical simulations show some bifurcation dynamics with respect to the derivative order β and prove that the observed chaotic behavior persists as β varies. These observations made here allow us to say that the fractional model under study belongs to the category of systems with hidden oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.