Abstract

Convergent cross mapping is a principled causal discovery technique for signals, but its efficacy depends on a number of assumptions about the systems that generated the signals. In this work, we present a self-contained introduction to the theory of causality in state-spaces, Takens' theorem, and cross maps, and we propose conditions to check if a signal is appropriate for cross mapping. Further, we propose simple analyses based on Gaussian processes to test for these conditions in data. We show that our proposed techniques detect when convergent cross mapping may conclude erroneous results using several examples from the literature, and we comment on other considerations that are important when applying methods such as convergent cross mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.