Abstract

Among GEN IV projects for future nuclear power plants, lead-cooled fast reactors (LFRs) seem to be a very interesting solution due to their benefits in terms of fuel cycle, coolant safety, and waste management. The novelty of this matter causes some open issues about coolant chemical aspects, structural aspects, monitoring instrumentation, etc. Particularly, hard neutron flux spectra would make traditional neutron instrumentation unfit to all reactor conditions, i.e., source, intermediate, and power range. Identification of new models of nuclear instrumentation specialized for LFR neutron flux monitoring asks for an accurate evaluation of the environment the sensor will work in. In this study, thermal hydraulics and chemical conditions for the LFR core environment will be assumed, as the neutron flux will be studied extensively by the Monte Carlo transport code MCNPX (Monte Carlo N-Particles X-version). The core coolant’s high temperature drastically reduces the candidate instrumentation because only some kinds of fission chambers and self-powered neutron detectors can be operated in such an environment. This work aims at evaluating the capabilities of the available instrumentation (usually designed and tailored for sodium-cooled fast reactors) when exposed to the neutron spectrum derived from the Advanced Lead Fast Reactor European Demonstrator, a pool-type LFR project to demonstrate the feasibility of this technology into the European framework. This paper shows that such a class of instrumentation does follow the power evolution, but is not completely suitable to detect the whole range of reactor power, due to excessive burnup, damages, or gamma interferences. Some improvements are possible to increase the signal-to-noise ratio by optimizing each instrument in the range of reactor power, so to get the best solution. The design of some new detectors is proposed here together with a possible approach for prototyping and testing them by a fast reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call