Abstract

A single bubble of typical volume 20 mm³ ≤ VB ≤ 400 mm³ was placed in downward conically diverging flow of low and moderate viscous liquids (aqueous solutions of glycerine and of electrolytes (NaCl, Na3PO4, MgSO4), and butanol). Experiments were performed over a range of Reynolds number 60≤Re≤2200, Weber number 1≤We≤14, Tadaki number 1≤Ta≤10, Eötvös number 1≤Eo≤22, and bubble aspect ratio 0.4≤b/a≤0.9. The bubble shape, bubble position and motion were investigated by direct observation of two plane projection of bubble by high speed camera. Typical sampling frequency was 150 fps. Relatively long records, (approximately 9000 frames per one bubble observation) allow us to get relevant statistics of treated data. Bubble aspect ratio has been determined from both projection planes. Dimensionless front area of observed bubble has been introduced as suitable parameter for correlation with Eötvös number. Model of static bubble and classical Wellek correlation were employed as asymptotes. Bubble rising velocity has been determined and tested for each single bubble with respect to liquid properties. Velocity data are plotted within the frame given by several theoretical predictions for pure and contaminated liquids. Dimensional analysis is used considering viscosity and surface tension effect. New simple correlation of bubble rising velocity separating the effects of viscosity and surface tension is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.