Abstract
The bubble shape affects the gas–liquid interface momentum, heat and mass transfer, as well as the flow field around the bubble. Correctly predicting the bubble shape is challenging but indispensable under bubble swarm conditions. In this work, the bubble aspect ratio, which is adopted for the characterization of the bubble shape, is obtained through high-speed photography combined with an image processing algorithm from several experiments with an oscillating bubble plume. The results show that the bubble aspect ratio tends to be a constant value with increasing the bubble diameter, rather than decreasing as predicted by various empirical correlations developed in single bubble experiments. None of the available empirical correlations can accurately correlate the bubble aspect ratio with Weber number or Tadaki number. Among the available correlations in literature, Eo based correlation proposed by Besagni and Inzoli (2016) and Eo-Re based correlation proposed by Besagni and Deen (2020) show a better performance. The predicted values of Eo-Re based correlation developed in this work are the closest to the experimental data compared with others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.