Abstract

In spectral theory on Banach spaces, certain more incisive results hold when the underlying space is weakly complete (that is, weakly sequentially complete). The standard proofs rely on the following deep theorem: any bounded linear map from the algebra of all complex continuous functions on a compact Hausdorff space to a weakly complete Banach space is weakly compact. The proof of this result depends in turn on a considerable amount of measure-theoretic machinery (see [4, Section VI.7]). We present here some alternative methods which avoid these technicalities. The results are then used to give an example of a set of projections, each having unit norm, which generate an unbounded Boolean algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.