Abstract

Over forty years ago, David Barron and Christopher Strachey published a startlingly elegant program for the Cartesian product of a list of lists, expressing it with a three nested occurrences of the function we now call foldr . This program is remarkable for its time because of its masterful display of higher-order functions and lexical scope, and we put it forward as possibly the first ever functional pearl. We first characterize it as the result of a sequence of program transformations, and then apply similar transformations to a program for the classical power set example. We also show that using a higher-order representation of lists allows a definition of the Cartesian product function where foldr is nested only twice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.