Abstract
We prove that the number of directions contained in a set of the form A × B ⊂ AG(2,p), where p is prime, is at least |A||B| − min{|A|, |B|} + 2. Here A and B are subsets of GF(p) each with at least two elements and |A||B| <p. This bound is tight for an infinite class of examples. Our main tool is the use of the Rédei polynomial with Szőnyi’s extension. As an application of our main result, we obtain an upper bound on the clique number of a Paley graph, matching the current best bound obtained recently by Hanson and Petridis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.