Abstract
Formal aspects of various ways of description of Jan Łukasiewicz’s four-valued modal logic £ are discussed. The original Łukasiewicz’s description by means of the accepted and rejected theorems, together with the four-valued matrix, is presented. Then the improved E.J. Lemmon’s description based upon three specific axioms, together with the relational semantics, is presented as well. It is proved that Lemmon’s axiomatic is not independent: one axiom is derivable on the base of the remanent two. Several axiomatizations, based on three, two or one single axiom are provided and discussed, including S. Kripke’s axiomatics. It is claimed that (a) all substitutions of classical theorems, (b) the rule of modus ponens, (c) the definition of “◊” and (d) the single specific axiom schema: ⬜A ∧ B → A ∧ ⬜B, called the jumping necessity axiom, constitute an elegant axiomatics of the system £.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have