Abstract
Asymptotic expressions for the bound state radial partial wave functions of three-body (nnc) halo nuclei with two loosely bound valence neutrons (n) are obtained in explicit form, when the relative distance between two neutrons (r) tends to infinity and the relative distance between the center of mass of core (c) and two neutrons (ρ) is too small or vice versa. These asymptotic expressions contain a factor that can strongly influence the asymptotic values of the three-body radial wave function in the vicinity of the hyperangle of φ~0 except 0 (r→∞ and ρ is too small except 0) or φ~π/2 except π/2 (ρ→∞ and r is too small except 0) in the configuration space. The derived asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (nnα) wave function for 6He nucleus obtained by other authors on the basis of multicluster stochastic variational method using the two forms of the αN-potential. The ranges of r (or ρ) from the asymptotical regions are determined for which the agreement between the calculated wave function and the asymptotics formulae is reached. Information about the values of the three-body asymptotic normalization factors is extracted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have