Abstract
The local structure of flat Banach modules is considered; in particular, it is shown that if a flat module has the approximation property, then it is freely approximable, that is, the identity operator on it is approximated by operators each of which admits factorization through a free Banach module satisfying a natural finiteness condition. Among the maps involved in the factorization, the first is approximately multiplicative up to ε on compact sets, and the second is exactly a morphism of modules. The properties of freely approximable and approximately projective modules are studied. It is proved that the standard complex for calculating the derived functor Ext is locally asymptotically exact in the first term for an arbitrary second argument if and only if its first argument is a flat Banach module.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have