Abstract

A difference equation analogue of the Knizhnik–Zamolodchikov equation is exhibited by developing a theory of the generating function H(z) of Hurwitz polyzeta functions to parallel that of the polylogarithms. By emulating the role of the KZ equation as a connection on a suitable bundle, a difference equation version of the notion of connection is developed for which H(z) is a flat section. Solving a family of difference equations satisfied by the Hurwitz polyzetas leads to the normalized multiple Bernoulli polynomials (NMBPs) as the counterpart to the Hurwitz polyzeta functions, at tuples of non-positive integers. A generating function for these polynomials satisfies a similar difference equation to that of H(z), but in contrast to the fact that said polynomials have rational coefficients, the algebraic independence of the usual Hurwitz zeta functions is proven, and the Hurwitz polyzeta functions are shown to satisfy no algebraic relations other than those arising from the shuffle relations. The values of the NMBPs at z=1 provide a regularization of the multiple zeta values at tuples of negative integers, which is shown to agree with the regularization given in Akiyama et al. (Acta Arith. 98:107–116, 2001). Various elementary properties of these values are proven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.