Abstract
We study a refinement of the symmetric multiple zeta value, called the t-adic symmetric multiple zeta value, by considering its finite truncation. More precisely, two kinds of regularizations (harmonic and shuffle) give two kinds of the t-adic symmetric multiple zeta values, thus we introduce two kinds of truncations correspondingly. Then we show that our truncations tend to the corresponding t-adic symmetric multiple zeta values, and satisfy the harmonic and shuffle relations, respectively. This gives a new proof of the double shuffle relations for t-adic symmetric multiple zeta values, first proved by Jarossay. In order to prove the shuffle relation, we develop the theory of truncated t-adic symmetric multiple zeta values associated with 2-colored rooted trees. Finally, we discuss a refinement of Kaneko–Zagier’s conjecture and the t-adic symmetric multiple zeta values of Mordell–Tornheim type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.