Abstract
Using the derivative of Boolean functions and the e-derivative defined by ourselves as research tools, we discuss the relationship among a variety of cryptographic properties of the weight symmetric H Boolean functions in the range of the weight with the existence of H Boolean functions. We also study algebraic immunity and correlation immunity of the weight symmetric H Boolean functions and the balanced H Boolean functions. We obtain that the weight symmetric H Boolean function should have the same algebraic immunity, correlation immunity, propagation degree and nonlinearity. Besides, we determine that there exist several kinds of H Boolean functions with resilient, algebraic immunity and optimal algebraic immunity. The above results not only provide a theoretical basis for reducing nearly half of workload when studying the cryptographic properties of H Boolean function, but also provide a new research method for the study of secure cryptographic property of Boolean functions. Such researches are important in cryptographic primitive designs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have