Abstract
If the Hodge conjecture holds for some generic (in the sense of Weil) geometric fibre of an Abelian scheme over a smooth projective curve , then numerical equivalence of algebraic cycles on coincides with homological equivalence. The Hodge conjecture for all complex Abelian varieties is equivalent to the standard conjecture of Lefschetz type on the algebraicity of the Hodge operator for all Abelian schemes over smooth projective curves. We investigate some properties of the Gauss-Manin connection and Hodge bundles associated with Abelian schemes over smooth projective curves, with applications to the conjectures of Hodge and Tate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have