Abstract
It has been a challenge to characterize the set of all possible sums of random variables with given marginal distributions, referred to as an aggregation set in this paper. We study the aggregation set via its connection to the corresponding lower-convex set, which is the set of all sums of random variables that are smaller than the respective marginal distributions in convex order. Theoretical properties of the two sets are discussed, assuming that all marginal distributions have finite mean. In particular, an aggregation set is always a subset of its corresponding lower-convex set, and the two sets are identical in the asymptotic sense after scaling. We also show that a lower-convex set is identical to the set of comonotonic sums with the same marginal constraint. The main theoretical results contribute to the field of multivariate distributions with fixed margins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.