Abstract
The present article is concerned with the numerical solution of boundary integral equa- tions by an adaptive wavelet boundary element method. This method approximates the solution with a computational complexity that is proportional to the solution’s best N -term approximation. The focus of this article is on algorithmic issues which includes the crucial building blocks and details about the efficient implementation. By numerical examples for the Laplace equation and the Helmholtz equation, solved for different geometries and right-hand sides, we validate the feasibility and efficiency of the adaptive wavelet boundary element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.