Abstract

A new adaptive fast multipole boundary element method (BEM) for solving 3-D half-space acoustic wave problems is presented in this paper. The half-space Green's function is employed explicitly in the boundary integral equation (BIE) formulation so that a tree structure of the boundary elements only for the boundaries of the real domain need to be applied, instead of using a tree structure that contains both the real domain and its mirror image. This procedure simplifies the implementation of the adaptive fast multipole BEM and reduces the CPU time and memory storage by about a half for large-scale half-space problems. An improved adaptive fast multipole BEM is presented for the half-space acoustic wave problems, based on the one developed recently for the full-space problems. This new fast multipole BEM is validated using several simple half-space models first, and then applied to model 3-D sound barriers and a large-scale windmill model with five turbines. The largest BEM model with 557470 elements was solved in about an hour on a desktop PC. The accuracy and efficiency of the BEM results clearly show the potential of the adaptive fast multipole BEM for solving large-scale half-space acoustic wave problems that are of practical significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call