Abstract

In this paper we introduce a PDE system which aims at describing the dynamics of a dispersed phase of particles moving into an incompressible perfect in two space dimensions. The system couples a Vlasov-type equation and an Euler- type equation: the fluid acts on the dispersed phase through a gyroscopic force whereas the latter contributes to the vorticity of the former. First we give a Dobrushin-type derivation of the system as a mean-field limit of a PDE system which describes the dynamics of a finite number of massive pointwise particles moving into an incompressible perfect fluid. This last system is itself inferred from the paper On the motion of a small body immersed in a two-dimensional incompressible perfect fluid, accepted for publication in Bulletin de la SMF where the system for one massive pointwise particle was derived as the limit of the motion of a solid body when the body shrinks to a point with fixed mass and circulation. Then we deal with the well-posedness issues including the existence of weak solutions. Next we exhibit the Hamiltonian structure of the system and finally, we study the behavior of the system in the limit where the mass of the particles vanishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.