Abstract

Bourgain posed the problem of calculating $$\begin{aligned} \Sigma = \sup _{n \ge 1} ~\sup _{k_1 < \cdots < k_n} \frac{1}{\sqrt{n}} \left\| \sum _{j=1}^n e^{2 \pi i k_j \theta } \right\| _{L^1([0,1])}. \end{aligned}$$ It is clear that \(\Sigma \le 1\); beyond that, determining whether \(\Sigma < 1\) or \(\Sigma =1\) would have some interesting implications, for example concerning the problem whether all rank one transformations have singular maximal spectral type. In the present paper we prove \(\Sigma \ge \sqrt{\pi }/2 \approx 0.886\), by this means improving a result of Karatsuba. For the proof we use a quantitative two-dimensional version of the central limit theorem for lacunary trigonometric series, which in its original form is due to Salem and Zygmund.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.