Abstract
A generalized Riemannian geometry is studied where the metric tensor is replaced by a matrix g of metrics. In this context new geometric quantities arise, which are trivial in ordinary Riemannian geometry. An application of this formalism to many-body alignments in general relativity is proposed, where the sub-constituents of the overall gravitational field are described by the components of g. The mutual gravitational interactions between the individual particles are encoded in specific tensors. In particular, very specific approximation schemes for Einstein’s field equations may be considered, which exclusively approximate those terms in the field equations which are due to interactions. The Newtonian limit as well as the first post-Newtonian approximation of the presented formalism is studied in order to display the interpretability of the presented formalism in terms of many-body alignments and in order to deduce a physical interpretation of the new geometric quantities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.