Abstract
The Li coefficients $\unicode[STIX]{x1D706}_{F}(n)$ of a zeta or $L$-function $F$ provide an equivalent criterion for the (generalized) Riemann hypothesis. In this paper we define these coefficients, and their generalizations, the $\unicode[STIX]{x1D70F}$-Li coefficients, for a subclass of the extended Selberg class which is known to contain functions violating the Riemann hypothesis such as the Davenport–Heilbronn zeta function. The behavior of the $\unicode[STIX]{x1D70F}$-Li coefficients varies depending on whether the function in question has any zeros in the half-plane $\text{Re}(z)>\unicode[STIX]{x1D70F}/2.$ We investigate analytically and numerically the behavior of these coefficients for such functions in both the $n$ and $\unicode[STIX]{x1D70F}$ aspects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.