Abstract

We study a doubly parabolic Keller–Segel system in one spatial dimension, with diffusions given by fractional Laplacians. We obtain several local and global well-posedness results for the subcritical and critical cases (for the latter we need certain smallness assumptions). We also study dynamical properties of the system with added logistic term. Then, this model exhibits a spatio-temporal chaotic behavior, where a number of peaks emerge. In particular, we prove the existence of an attractor and provide an upper bound on the number of peaks that the solution may develop. Finally, we perform a numerical analysis suggesting that there is a finite time blowup if the diffusion is weak enough, even in presence of a damping logistic term. Our results generalize on one hand the results for local diffusions, on the other the results for the parabolic–elliptic fractional case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.