Abstract

This paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: {(−Δ)α2u(x)=(1|⋅|σ∗vp1)vp2(x),x∈Rn,(−Δ)α2v(x)=(1|⋅|σ∗uq1)uq2(x),x∈Rn,u(x)≥0,v(x)≥0,x∈Rn,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} (-\\Delta )^{\\frac{\\alpha }{2}}u(x)= (\\frac{1}{ \\vert \\cdot \\vert ^{\\sigma }} \\ast v^{p_{1}} )v^{p_{2}}(x), \\quad x\\in \\mathbb{R}^{n}, \\\\ (-\\Delta )^{\\frac{\\alpha }{2}}v(x)= (\\frac{1}{ \\vert \\cdot \\vert ^{\\sigma }} \\ast u^{q_{1}} )u^{q_{2}}(x), \\quad x\\in \\mathbb{R}^{n}, \\\\ u(x)\\geq 0,\\quad\\quad v(x)\\geq 0, \\quad x\\in \\mathbb{R}^{n}, \\end{cases} $$\\end{document} where 0<alpha leq 2, ngeq 2, 0<sigma <n, and 0< p_{1}, q_{1}leq frac{2n-sigma }{n-alpha }, 0< p_{2}, q_{2}leq frac{n+alpha -sigma }{n-alpha }. Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution (u,v) in the critical case and nonexistence of positive solutions in the subcritical cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call