Abstract

Knowledge space theory (KST) structures are introduced within item response theory (IRT) as a possible way to model local dependence between items. The aim of this paper is threefold: firstly, to generalize the usual characterization of local independence without introducing new parameters; secondly, to merge the information provided by the IRT and KST perspectives; and thirdly, to contribute to the literature that bridges continuous and discrete theories of assessment. In detail, connections are established between the KST simple learning model (SLM) and the IRT General Graded Response Model, and between the KST Basic Local Independence Model and IRT models in general. As a consequence, local independence is generalized to account for the existence of prerequisite relations between the items, IRT models become a subset of KST models, IRT likelihood functions can be generalized to broader families, and the issues of local dependence and dimensionality are partially disentangled. Models are discussed for both dichotomous and polytomous items and conclusions are drawn on their interpretation. Considerations on possible consequences in terms of model identifiability and estimation procedures are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.