Abstract

We consider a classical shape optimization problem for the eigenvalues of elliptic operators with homogeneous boundary conditions on domains in the N-dimensional Euclidean space. We survey recent results concerning the analytic dependence of the elementary symmetric functions of the eigenvalues upon domain perturbation and the role of balls as critical points of such functions subject to volume constraint. Our discussion concerns Dirichlet and buckling-type problems for polyharmonic operators, the Neumann and the intermediate problems for the biharmonic operator, the Lame and the Reissner–Mindlin systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.