Abstract

Integral equation methods are often used to treat exterior problems in acoustics, electromagnetics and linear elasticity. The simplest equations are these of the second kind which are susceptible to Fredholm type theory and fail to be uniquely solvable at the so-called irregular frequencies. Inorder to avoid the nonuniqueness problem arising in this kind of equations a modified boundary integral equation for the Neumann problem in linear elasticity in R3 is proposed. The displacement field is expressed as a linear combination of a single and a double layer potentials. The unique solvability of the boundary integral equation is demonstrated by considering commutativity properties which the involved to the problem integral operators satisfy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.