Abstract
This paper studies a class of shrinkage estimators of the vector of regression coefficients. The small disturbance approximations for the bias and the mean squared error matrix of the estimator are derived. In the sense of mean squared error, these estimators dominate the least squares estimator and the generalized Stein estimator developed by Hosmane (1988).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have