Abstract
The study of the Lie groups with a left invariant flat pseudo-metric is equivalent to the study of the left-symmetric algebras with a nondegenerate left invariant bilinear form. In this paper, we consider such a structure satisfying an additional condition that there is a decomposition into a direct sum of the underlying vector spaces of two isotropic subalgebras. Moreover, there is a new underlying algebraic structure, namely, a special L-dendriform algebra and then there is a bialgebra structure which is equivalent to the above structure. The study of coboundary cases leads to a construction from an analogue of the classical Yang–Baxter equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.