Abstract

In this paper, we consider a coupled system of two biharmonic equations with damping and source terms of variable-exponent nonlinearities, supplemented with initial and mixed boundary conditions. We establish an existence and uniqueness result of a weak solution, under suitable assumptions on the variable exponents. Then, we show that solutions with negative-initial energy blow up in finite time. To illustrate our theoritical findings, we present two numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.