Abstract
In this paper we consider the existence of a 1-factorization of undirected Cayley graphs of groups of even order. We show that a 1-factorization exists for all generating sets for even order abelian groups, dihedral groups, and dicyclic groups and for all minimal generating sets for even order nilpotent groups and for D m × Z n . We also derive other results that are useful in considering specific Cayley graphs. These results support the conjecture that all Cayley graphs of groups of even order are 1-factorizable. If this is not the case the same result may hold for minimal generating sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.