Abstract

Abstract We study the behavior of pseudospin-1 Dirac fermions in a Lieb lattice subjected to an external periodic potential. It is found that there exists a zero-averaged wave-number passband at the incident energy corresponding to half of the potential step, in contrast to zero-averaged wave-number gap in graphene superlattices. By tuning the sublattice site-energy, the passband can be turned into an omnidirectional gap. Consequently, a transformation from omnidirectional transmission to reflection, accompanied with a switch of conductance from maximum to zero can be realized easily. It is expected that the controllable properties are useful for some applications in optical or electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.