Abstract
For the vast majority of people on earth, wheat is a primary staple food crop. It is one of the most vulnerable crops, the production of which significantly suffers from the harmful effects of climate change. As the predicted increase in global temperature is supposed to jeopardize production, wheat improvement towards heat stress-resilience has gained pivotal importance. The large and complex allohexaploid wheat genome represents a genetic puzzle, where deciphering any trait-genetics is always challenging. Fortunately, the advancement in the ‘omics’ approach has paved the way for solving these issues in a multidisciplinary convergent manner. The approach has significantly contributed towards the complex molecular mechanisms of the heat stress tolerance in wheat. In the recent past, salient attainments have been observed in exploring heat tolerance mechanisms in wheat addressed through omics technologies. All these approaches have identified some of the key regulators behind this complex trait, the conglomeration of which is definitely promising for achieving heat tolerant cultivars. Besides, the epigenetic regulation of this important trait as well as the significant achievements in developing heat tolerant lines through a transgenic approach has been enumerated. This summarized review of an issue of global importance should enlighten the understanding of the complex regulation of heat tolerance mechanism in wheat, which is a prerequisite for the development of stable heat tolerant wheat cultivars in near future. Here we discussed current research on the genetic and molecular variables that alter one's ability to tolerate heat, including the effects of epigenetic regulation. At the end, we concluded the review by discussing integrative methods for enhancing heat tolerance through the use of current germplasm, such as contemporary cultivars, landraces, and related species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have