Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia in premature infants. Earlier we observed that aryl hydrocarbon receptor (AhR)-deficient mice are more susceptible to hyperoxic lung injury than AhR-sufficient mice, and this phenomenon was associated with a lack of expression of cytochrome P450 1A enzymes. Omeprazole, a proton pump inhibitor used in humans with gastric acid-related disorders, activates AhR in hepatocytes in vitro. However, the effects of omeprazole on AhR activation in the lungs and its impact on hyperoxia-induced reactive oxygen species (ROS) generation and inflammation are unknown. In this study, we tested the hypothesis that omeprazole attenuates hyperoxia-induced cytotoxicity, ROS generation, and expression of monocyte chemoattractant protein-1 (MCP-1) in human lung-derived H441 cells via AhR activation. Experimental groups included cells transfected with AhR small interfering RNA (siRNA). Hyperoxia resulted in significant increases in cytotoxicity, ROS generation, and MCP-1 production, which were significantly attenuated with the functional activation of AhR by omeprazole. The protective effects of omeprazole on cytotoxicity, ROS production, and MCP-1 production were lost in H441 cells whose AhR gene was silenced by AhR siRNA. These findings support the hypothesis that omeprazole protects against hyperoxic injury in vitro via AhR activation that is associated with decreased ROS generation and expression of MCP-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.