Abstract

Acetyl-CoA carboxylase (ACCase) has a very important regulatory role in controlling plant fatty acid biosynthesis, thereby affecting lipid biosynthesis. The ACCase gene was amplified from Jatropha curcas using PCR with two degenerate primers, and the 1250-bp amplicon was cloned and sequenced. Sequence analysis revealed that the sequence obtained was similar to J atropha curcas , Ricinus communis , Camellia sinensis and Phaseolus vulgaris acetyl cocoa, with 75% similarity. The full length of the gene was sub-cloned into a prokaryotic expression vector and the induced recombinant Escherichia coli was grown on 0.2% (w/v) sodium oleate. The cell metabolite was analyzed using thin-layer chromatography and HPLC. This analysis revealed that the cell metabolite consisted of a mixture of esters, mainly consisting of oleic acid (0.7 g/L) plus minor amounts of palmitic acid, linoleic acid and stearic acid. Fed-batch cultivation of E. coli was conducted at the specific growth rates of 0.15 and 0.1 h -1 for constant and exponential strategies, respectively. A high cell density of 20 g/L with an overall biomass yield of 3 g/L was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call