Abstract

Emerin, a membrane component of nuclear "lamina" networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified ("O-GlcNAcylated") in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ~50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ~66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ~30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B "niche." These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.

Highlights

  • Nuclear membrane protein emerin binding to nuclear intermediate filaments and barrier to autointegration factor (BAF) contributes to forming a nuclear “lamina” structure

  • We concluded that the nuclear fraction (NE) and NS fractions were enriched for distinct nucleoskeletal “niches”; both niches included emerin, A-type lamins, and BAF, whereas actin was primarily easy, and two other components, chromatin and lamin B, were primarily sonication-dependent

  • One population included the vast majority of lamin B and chromatin; only in this context did GFP-emerin associate with endogenous BAF

Read more

Summary

Background

Nuclear membrane protein emerin binding to nuclear intermediate filaments (lamins) and BAF contributes to forming a nuclear “lamina” structure. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B “niche.” These results reveal direct control of a conserved LEM domain nuclear lamina component by ␤-Nacetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics. We report that OGT regulates emerin’s most fundamental and least understood role in cells: association with BAF, the essential chromatin component of the nuclear lamina. This discovery was facilitated by a fractionation method, reported here, that separates two functionally distinct populations of emerin

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.