Abstract
Different synthetic DNA nucleotide sequences were evaluated as gene probes for the specific detection and differentiation of Staphylococcus aureus strains encoding enterotoxins A (SEA), B (SEB), and C (SEC) and toxic shock syndrome toxin 1 (TSST-1). Identification of sequences unique to each toxin, based on knowledge of their nucleotide sequences, led to preparation of the specific 18-base oligonucleotide probes EA1 (encoding amino acids 177 to 182 of SEA), EB2 (encoding amino acids 105 to 110 of SEB), EC5 (encoding amino acids 125 to 131 of SEC1), and TS1 (encoding amino acids 160 to 166 of TSST-1). In colony blot hybridization analyses, these probes hybridized specifically with DNA from strains that produced the respective toxin serotypes. An excellent (greater than or equal to 93%) correlation between hybridization results (genotype) and toxin protein detection by an enzyme-linked immunosorbent assay (phenotype) was observed in the characterization of both reference and clinical strains of S. aureus for SEA, SEB, and TSST-1. A lower correlation (64%) for SEC reflected a lack of sensitivity in detecting toxin production. Our findings demonstrate that molecular DNA hybridization with synthetic oligonucleotide probes provides another approach for establishing the toxigenicity of S. aureus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have