Abstract

The emergence of resistance to anti-influenza drugs calls for the search for new antiviral molecules with different resistance profiles. Polyphenolic compounds are found in various plants and have antiviral and antioxidative properties. We tested the hypothesis that oligonol, a lychee fruit-derived low molecular weight polyphenol, possesses anti-influenza effects by inhibiting phosphorylation of extracellular-signal-regulated kinases (ERK). Real time PCR, plaque assay, and immunofluorescence techniques were used to study the effects of oligonol on proliferation of influenza virus. Oligonol inhibits influenza virus proliferation by blocking attachment of the virus to MDCK cells and by suppression of nuclear export of influenza virus ribonucleoprotein (RNP). Infection of MDCK cells with influenza virus leads to an increase in production of reactive oxygen species (ROS) and induction of a ROS-dependent ERK phosphorylation. Inhibition of ERK activation by a dominant negative mutant of ERK or N-acetyl-cysteine (NAC) leads to inhibition of influenza RNP nuclear export. Phorbol 12-myristate 13-acetate (PMA) induces ROS production, ERK phosphorylation and enhances influenza proliferation in MDCK cells. Oligonol and NAC inhibit PMA-induced ERK phosphorylation and ROS production. Our studies suggest that the underlying mechanism for the inhibitory effect of oligonol on influenza virus RNP nuclear export is blocking of ROS-dependent induction of ERK phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.